Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.

Identifieur interne : 001A18 ( Main/Exploration ); précédent : 001A17; suivant : 001A19

Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.

Auteurs : F G Kuruvilla [États-Unis] ; A F Shamji ; S L Schreiber

Source :

RBID : pubmed:11416207

Descripteurs français

English descriptors

Abstract

The target of rapamycin (Tor) proteins sense nutrients and control transcription and translation relevant to cell growth. Treating cells with the immunosuppressant rapamycin leads to the intracellular formation of an Fpr1p-rapamycin-Tor ternary complex that in turn leads to translational down-regulation. A more rapid effect is a rich transcriptional response resembling that when cells are shifted from high- to low-quality carbon or nitrogen sources. This transcriptional response is partly mediated by the nutrient-sensitive transcription factors GLN3 and NIL1 (also named GAT1). Here, we show that these GATA-type transcription factors control transcriptional responses that mediate translation by several means. Four observations highlight upstream roles of GATA-type transcription factors in translation. In their absence, processes caused by rapamycin or poor nutrients are diminished: translation repression, eIF4G protein loss, transcriptional down-regulation of proteins involved in translation, and RNA polymerase I/III activity repression. The Tor proteins preferentially use Gln3p or Nil1p to down-regulate translation in response to low-quality nitrogen or carbon, respectively. Functional consideration of the genes regulated by Gln3p or Nil1p reveals the logic of this differential regulation. Besides integrating control of transcription and translation, these transcription factors constitute branches downstream of the multichannel Tor proteins that can be selectively modulated in response to distinct (carbon- and nitrogen-based) nutrient signals from the environment.

DOI: 10.1073/pnas.121186898
PubMed: 11416207
PubMed Central: PMC34660


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.</title>
<author>
<name sortKey="Kuruvilla, F G" sort="Kuruvilla, F G" uniqKey="Kuruvilla F" first="F G" last="Kuruvilla">F G Kuruvilla</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Shamji, A F" sort="Shamji, A F" uniqKey="Shamji A" first="A F" last="Shamji">A F Shamji</name>
</author>
<author>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11416207</idno>
<idno type="pmid">11416207</idno>
<idno type="doi">10.1073/pnas.121186898</idno>
<idno type="pmc">PMC34660</idno>
<idno type="wicri:Area/Main/Corpus">001A10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A10</idno>
<idno type="wicri:Area/Main/Curation">001A10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A10</idno>
<idno type="wicri:Area/Main/Exploration">001A10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.</title>
<author>
<name sortKey="Kuruvilla, F G" sort="Kuruvilla, F G" uniqKey="Kuruvilla F" first="F G" last="Kuruvilla">F G Kuruvilla</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Shamji, A F" sort="Shamji, A F" uniqKey="Shamji A" first="A F" last="Shamji">A F Shamji</name>
</author>
<author>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Carbon (metabolism)</term>
<term>Citric Acid Cycle (MeSH)</term>
<term>Culture Media (MeSH)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Energy Metabolism (MeSH)</term>
<term>Fungal Proteins (metabolism)</term>
<term>GATA Transcription Factors (MeSH)</term>
<term>Gene Expression Regulation, Fungal (physiology)</term>
<term>Models, Biological (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Protein Biosynthesis (MeSH)</term>
<term>Repressor Proteins (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Zinc Fingers (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Azote (métabolisme)</term>
<term>Biosynthèse des protéines (MeSH)</term>
<term>Carbone (métabolisme)</term>
<term>Cycle citrique (MeSH)</term>
<term>Doigts de zinc (MeSH)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Facteurs de transcription GATA (MeSH)</term>
<term>Milieux de culture (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Métabolisme énergétique (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (MeSH)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines de répression (MeSH)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (physiologie)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Carbon</term>
<term>DNA-Binding Proteins</term>
<term>Fungal Proteins</term>
<term>Nitrogen</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Azote</term>
<term>Carbone</term>
<term>Facteurs de transcription</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines fongiques</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Citric Acid Cycle</term>
<term>Culture Media</term>
<term>Energy Metabolism</term>
<term>GATA Transcription Factors</term>
<term>Models, Biological</term>
<term>Protein Biosynthesis</term>
<term>Repressor Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Signal Transduction</term>
<term>Transcription, Genetic</term>
<term>Zinc Fingers</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Cycle citrique</term>
<term>Doigts de zinc</term>
<term>Facteurs de transcription GATA</term>
<term>Milieux de culture</term>
<term>Modèles biologiques</term>
<term>Métabolisme énergétique</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de répression</term>
<term>Transcription génétique</term>
<term>Transduction du signal</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin (Tor) proteins sense nutrients and control transcription and translation relevant to cell growth. Treating cells with the immunosuppressant rapamycin leads to the intracellular formation of an Fpr1p-rapamycin-Tor ternary complex that in turn leads to translational down-regulation. A more rapid effect is a rich transcriptional response resembling that when cells are shifted from high- to low-quality carbon or nitrogen sources. This transcriptional response is partly mediated by the nutrient-sensitive transcription factors GLN3 and NIL1 (also named GAT1). Here, we show that these GATA-type transcription factors control transcriptional responses that mediate translation by several means. Four observations highlight upstream roles of GATA-type transcription factors in translation. In their absence, processes caused by rapamycin or poor nutrients are diminished: translation repression, eIF4G protein loss, transcriptional down-regulation of proteins involved in translation, and RNA polymerase I/III activity repression. The Tor proteins preferentially use Gln3p or Nil1p to down-regulate translation in response to low-quality nitrogen or carbon, respectively. Functional consideration of the genes regulated by Gln3p or Nil1p reveals the logic of this differential regulation. Besides integrating control of transcription and translation, these transcription factors constitute branches downstream of the multichannel Tor proteins that can be selectively modulated in response to distinct (carbon- and nitrogen-based) nutrient signals from the environment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11416207</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>07</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>98</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2001</Year>
<Month>Jun</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.</ArticleTitle>
<Pagination>
<MedlinePgn>7283-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The target of rapamycin (Tor) proteins sense nutrients and control transcription and translation relevant to cell growth. Treating cells with the immunosuppressant rapamycin leads to the intracellular formation of an Fpr1p-rapamycin-Tor ternary complex that in turn leads to translational down-regulation. A more rapid effect is a rich transcriptional response resembling that when cells are shifted from high- to low-quality carbon or nitrogen sources. This transcriptional response is partly mediated by the nutrient-sensitive transcription factors GLN3 and NIL1 (also named GAT1). Here, we show that these GATA-type transcription factors control transcriptional responses that mediate translation by several means. Four observations highlight upstream roles of GATA-type transcription factors in translation. In their absence, processes caused by rapamycin or poor nutrients are diminished: translation repression, eIF4G protein loss, transcriptional down-regulation of proteins involved in translation, and RNA polymerase I/III activity repression. The Tor proteins preferentially use Gln3p or Nil1p to down-regulate translation in response to low-quality nitrogen or carbon, respectively. Functional consideration of the genes regulated by Gln3p or Nil1p reveals the logic of this differential regulation. Besides integrating control of transcription and translation, these transcription factors constitute branches downstream of the multichannel Tor proteins that can be selectively modulated in response to distinct (carbon- and nitrogen-based) nutrient signals from the environment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kuruvilla</LastName>
<ForeName>F G</ForeName>
<Initials>FG</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shamji</LastName>
<ForeName>A F</ForeName>
<Initials>AF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schreiber</LastName>
<ForeName>S L</ForeName>
<Initials>SL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM038627</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 GM038627</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM-38627</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C096100">GAT1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050980">GATA Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C071664">GLN3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002952" MajorTopicYN="N">Citric Acid Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050980" MajorTopicYN="N">GATA Transcription Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="Y">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="Y">Repressor Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="Y">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016335" MajorTopicYN="N">Zinc Fingers</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11416207</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.121186898</ArticleId>
<ArticleId IdType="pii">98/13/7283</ArticleId>
<ArticleId IdType="pmc">PMC34660</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biotechnol. 1999 Aug;12(1):35-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10554772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1999 May;6(5):R129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 13;151(4):863-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 5;276(1):244-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11031268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Feb;172(2):1014-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2153652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Feb;11(2):822-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1990286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jan;177(1):94-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7798155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Apr;15(4):2321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7891726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1996 Sep 15;12(11):1135-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8896280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Sep;179(17):5609-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9287023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):44-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
<name sortKey="Shamji, A F" sort="Shamji, A F" uniqKey="Shamji A" first="A F" last="Shamji">A F Shamji</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Kuruvilla, F G" sort="Kuruvilla, F G" uniqKey="Kuruvilla F" first="F G" last="Kuruvilla">F G Kuruvilla</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A18 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A18 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11416207
   |texte=   Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11416207" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020